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Abstract 

We propose here efficient mathematical tracking control algorithms to design the spiking or 

bursting behavior in the four dimensional dynamical system modeling biological neurons 

represented by the Hodgkin-Huxley (HH) differential equations. The stimulating external 

electrical current serves as a control signal, while the membrane action potential is the target 

output. We use two alternative feedback algorithms, Fradkov‟s speed gradient and Kolesnikov‟s 

„synergetic‟ target attractor control, to produce arbitrary spiking or bursting regimes in the 

model and to track the action potential of the system. Both algorithms demonstrate high 

efficiency and robustness for the controlled HH dynamics. For virtually any initial condition we 

are able to form a single spike at the chosen moment of time, the train with any number of spikes, 

the arbitrary-shaped burst, and also to switch between regular and chaotic regimes of bursting. 
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Two approaches developed here could be easily adopted for the networks of neural clusters and 

used effectively for the purposes of neuro-informatics and for modeling neural dysfunctions like 

epileptiform or other abnormal behavior in Hodgkin-Huxley neuron clusters. This work has been 

supported by the TÜBİTAK project 116F049 “Controlling Spiking and Bursting Dynamics in 

Hodgkin-Huxley Neurons”. 

Keywords 

Hodgkin-Huxley Neuron, Neuron Spiking and Bursting, Feedback, Tracking Control, Speed 

Gradient, Target Attractor Feedback 

 

1. Introduction 

Biological neurons demonstrate variety of complex dynamical behavior that includes 

intermittency between resting and spiking at the different time scales (Rabinovich & Abarbanel, 

1998; Purali, 2002; DiLorenzo & Victor, 2013). This intermittency causes their bursting 

properties, provides the communication among the cells and forms a basis for the information 

processing in biological networks.  

The mechanisms of such irregular behavior are originated in the inner structure of 

neurons and in the architecture of their networks as well. In the bursting regime the neuron, 

stimulating by external electrical currents (signals) coming to its dendrites from the companion 

cells and by internal information treating processes in its own soma, produces in its axon an 

intensive spike train or several spikes or just one. Bursting is a quasi-periodical process, and 

usually it has a chaotic dynamical character (Strogatz, 1994; Cymbalyuka, et al., 2005).  

Networks with spiking neurons play an important role in many applications of pattern 

recognition (Awadalla & Sadek, 2012) and computational algorithms (Bower, 2013; Brody & 

Hopfield, 2003). Neural populations demonstrate wide diapason of their flexible feedback for 

changes in the input stimuli. These adaptations help optimize the transmission of information 

about sensory inputs (Rasmussen, et al., 2017). Modeling of real systems demands computational 

neural network algorithms dealing with multi criteria decision making method (Lu, Tucciarone, 

et al., 2017; Saha, et al., 2017).In the frame of such algorithms the control of neuron spiking is a 

central subject of neuroscience (Moss & Gielen, 2001; Bandopadhayay & Stiles, 2017), 

particularly for learning processes (Bower, 2013; Qiao, et al., 2015). 
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Theoretical modelsproposed for spiking neuronscover virtually all areas of modern 

mathematics. Mostly they are formulated in the terms of multi-dimensional systems of ordinary 

differential equations. 

In our paper we study feedback control algorithms applied to the most popular 

mathematical model of real neuron, the Hodgkin-Huxley dynamical system. 

1.1. Review of Feedforward and Feedback Driven Control Methods for Neuron Dynamics 

To drive the dynamical regime of the neuron, the electrical current I stimulating the 

membrane plays a role of an external control parameter. Usually this control current has been 

taken as a constant or a simple step-type function. Open-loop (feedforward) approachhas been 

used in (Fourcaud-Trocme, et al., 2003) for the linear response model with noisy input that 

combines fluctuations with a small harmonic component. The similar combination of feed 

forward designed pulses with the small noise applied to the Hodgkin-Huxley model was studied 

in (Danzl & Moehlis, 2008). A regular aperiodic high-frequency control signal was applied in 

(Qin et al., 2013). The set of open-loop control signals for the planar case has been reviewed in 

(Izhikevich, 2000); the corresponding detailed stability analysis one can find for a single neuron 

(Haddad, et al., 2014) and for dynamical networks of several neurons (Schultheiss, et al., 2011). 

Majority of control feedforward algorithms applied to neuronal models are related to 

spike train design with the fixed shapes of the spikes, but with the variation over the inter-spike 

intervals and the number of pulses in the train. For instance, an optimal control scheme was 

performed in (Ahmadian, et al., 2011), where the control current I, consisted of the sequence of 

rectangular pulses, was limited in its amplitude. Alternative analysis (for a simplified 1-

dimensional reduced model) was given in (Nabi & Moehlis, 2012). Adapted inverse control on 

spike train with delay was developed in (Li, et al., 2013). Also we should mention the Spike 

Response Model (Jolivet, et al., 2003) that predicts spikes in-vivo. 

For multidimensional models, like HH, there are extra possibilities to manipulate with 

their nonlinear dynamics: the choice of an appropriate constant current I shifts an existing Hopf 

bifurcation or creates a new one (Ding & Hou, 2010). 

Feedback (closed-loop) approachhas been used experimentally for stimulation of a 

particular regime of non-monotonic firing response (Lewis, et al., 2007).  

For cellular systems the non-linear control algorithms have been recently developed in 

the form of Particle Swarm Optimization (Subashini, et al., 2017). 
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1.2. The Hodgkin-Huxley Model for Neuron Dynamics 

One of the most popular ODE models for a single neuron has been derived 

phenomenologically in (Hodgkin & Huxley, 1952) and was awarded with the Nobel Prize in 

Physiology and Medicine in 1963. It involves four independent variables: one stands for the 

action potential producing spikes and bursts, and three for the probabilities of the membrane ion 

gates to be open or closed.  

The set of dynamical equations corresponding to Hodgkin-Huxley (HH) model is given 

by (Hodgkin & Huxley, 1952): 
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Here v(t) stands for the membrane potential, m(t), n(t), h(t) are the membrane gate variables, and 

the control signal is represented by the sum I(t) of external and synaptic currents entering the 

cell.  

Here αm,n,h and βm,n,h are fenomenologically found suitable rate positive coefficients related to the 

gate probabilities, they are given by:  
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The set of constants in (1) includes the potentials ENa (equilibrium potential at which the 

net flow of Na ions is zero), EK (equilibrium potential at which the net flow of K ions is zero), ECl 

(equilibrium potential at which leakage is zero) in mV, the membrane capacitance CM and the 
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conductivities gNa (sodium channel conductivity), gK (potassium channel conductivity), gCl 

(leakage channel conductivity) in mS/cm
2
: 
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Dynamics of Hodgkin-Huxley neurons possesses variety of regular and chaotic regimes 

(Guckenheimer & Oliva, 2002; Horng & Huang, 2006; Wang, et al., 2011; Hoppensteadt, 2013). 

Being 4-dimentional, it covers the resting-and-spiking intermittency.  

The model (1)-(3) has several features reflecting real properties of biological neurons:  

a) It cannot spike itself without a stimulation by the external current I;  

b) It has a threshold (Tonnelier, 2005), i.e. HH neuron can spike under the stimulation even 

with a constant current, but it must be greater than a certain minimum level. 

The application of control algorithms to the single control parameter I(t) allows to 

reproduce the variety of dynamical regimes in the model (1)-(3). 

 

2. Control Algorithms for Hodgkin-Huxley Neuron Tracking 

To track the dynamics of a single HH neuron we use here two alternative suboptimal 

algorithms: speed gradient and target attractor feedback. In both our approaches we force the HH 

system to follow (to track) the goal membrane potential functions and uses the stimulating 

current as an external control parameter.  

2.1. Speed Gradient Algorithm 

Speed gradient (SG) algorithm is based on the definition of the scalar target (goal) function 

(Fradkov & Pogromsky, 1998; Fradkov, 2007), that for the case of single neuron with one action 

potential can be defined as: 

  .)()(
2

1 2

* tvtvG 
(4) 

Here v(t) is the actual membrane potential in the system (1), v*(t) is the target potential that must 

have a shape of smooth differentiable function. The goal of feedback control is achieved when 
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the target function G tends to zero. The target (4) following the goal membrane potential v* as a 

given time-dependent function is called tracking. 

Let‟stakethe time derivative of (4): 
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The derivative dtdv /  contains the control signal I through the RHS of the corresponding 

dynamical system (1).The algorithm defines the feedback control in a gradient form in the space 

of control signal. In the case of one neuron it is reduced to the partial derivative due to 1-

dimensional character of the driving current I:  
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Here   is a positive constant. By (1) it implies: 
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Together with the system (1) the SG control algorithm (7) leads the evolution of the dynamical 

system to the attractor manifold described by the goal function (4). 

2.2. Target Attractor Algorithm 

Target attractor (TA) algorithm (“synergetic control” in author‟s terminology) is based on the 

“directed self-organization of the dynamical system” (Kolesnikov, 2012). The m-parametric 

attracting invariant manifold (the subset referring the control target) 

msxx ns ...1;0),...,( 1   (8) 

is defined as a functions of the state variables x1,…,xn. Eqs(8) provide the asymptotic stability of 

the system dynamics with respect to the control target. To do it, let‟s require minimum of the 

following optimizing functional to be satisfied: 

,min)(
)(

0 1

2

2

2 


































  





dtt
dt

td
TJ

m

s

s
s

s 
 (9) 



MATTER: International Journal of Science and Technology          
ISSN 2454-5880   

 

 
Available Online at: http://grdspublishing.org/  

566 

where T‟s are positive constants (time scales). To achieve the minimum (9) in exponent 

asymptotic we define the “synergetic” feedback as a set of s equations for the observers 

(Kolesnikov, 2014):  

0)(
)(
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dt
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T s

s 
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Tending to zeros, the observers (8), (10) lead the dynamical evolution of the system to the target 

attractor. 

Let‟s construct the target attractor feedback algorithm for the membrane action potential 

v(t). For its tracking we define the goal function in the form: 

)()()( * tvtvt  ,    (11) 

with a given target potential )(tv*
. In the exponential form the “synergetic” feedback (10) is given 

by: 
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with a positive control constant T. That leads to: 
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The control signal I is restored from RHS of the dynamical system after the substitution (13) into 

(1): 
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 Eq.(14) together with thesystem (1) corresponds to the driven neuron tracked to the target 

action potential v*. 

2.3. Comparison of Speed Gradient and Target Attractor Algorithms 

To emphasize the principle difference between two algorithms, SG and TA, one can 

express them in „mechanical‟ terms. Speed gradient approach creates in the dynamical system an 

extra force that serves as a „viscous friction‟. It is off at the constant or dynamically changing 

target parameter level (action potential in our model). Far away from this level the „friction‟ is 

large. Target attractor algorithm defines the attractor manifold, takes the dynamics of the system 
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into its neighborhood exponentially and forces the system to stay forever at the target attractor. 

Definitely, such a‟ hard‟ approach should be more efficient from the point of accuracy to 

compare with the „soft‟ SG, but in the same time more energy consuming. 

 Both algorithms provide the robustness (Fradkov & Pogromsky, 1998; Kolesnikov, 

2012): they do not depend sufficiently on the initial conditions and are stable under the relatively 

small external perturbations in the dynamics of the driven system (1). Both algorithms are sub-

optimal: they are closed to the Pontryagin‟s optimal control locally. 

 

3. Simulation of Tracking for Hodgkin-Huxley Neuron 

Here we demonstrate numerically the efficiency of our both tracking algorithms via the 

example where the target membrane potential is formed by the set of harmonic functions with 

different amplitudes and different frequencies. The same tracking efficiency we observed in 

many numerical experiments for HH neuron tracking for different shapes of the target potential. 

3.1. Tracking the Dynamics of HH Neuron via SG and TA Algorithms 

The difference in the tracking for two algorithms is presented on Figure 1 for the target signal: 
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The typical scales of the target function (15) reflect the features of real neurons. For both 

algorithms the control constants gamma and 1/T has been chosen as 0.05.
 

The goal of tracking is achieved in both algorithms: the actual (blue) and the red (target) 

voltages on Figure 1 are in good agreement.  

At the points with the highest absolute value of the target potential derivative TA 

algorithm tracks the goal better.  
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Figure 1: Tracking for the linear superposition of harmonics (15). The target potential v*(t) is 

denoted by red color, the actual action potential v(t) – by blue color. Left: speed gradient 

algorithm; Right: target attractor algorithm. 

 

On Figure 2 the tracking is performed for the combination of a burst-type function and 

the train of three Gaussian-shaped spikes: 
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They correspond to a combination of bursting and spiking behavior in a real neuron. 

 

  

Figure 2: Tracking for the burst-type pulse and the spike train (16). The target potential v*(t) is 

denoted by red color, the actual action potential v(t) – by blue color. Left: speed gradient 

algorithm; Right: target attractor algorithm. 

 

One can easily see that the speed gradient algorithm can copy the arbitrary shape of the target 

potential, but it may have a systematic error between the actual action potential (the blue color 
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on Figs. 1-2) and its target (the red color on Figs. 1-2), see Section 3.2. Target attractor algorithm 

does not demonstrate such features. 

The basic criteria for the comparison of SG and TA algorithms are the error of tracking 

and the energy efficiency. 

3.2. Comparison of Tracking Error of SG and TA Algorithms for HH Neuron 

The goal achievement of the tracking is evaluated by the error function: 

.)()()( * tvtvte 
(17) 

It is plotted for the target function (15)-(16) on Figure 3. 

 

  

Figure 3: Error of tracking e(t) for speed gradient (green) and target attractor (black) 

algorithms. Left: the linear superposition of harmonics (15); Right: the bursting-and-spiking 

train (16). 

On Figure 3 one can observe easily that the achievement of the goal may have a 

systematic error for the case of SG, especially for the spiking train case. It depends strongly on 

the control constant gamma in (6). This effect is observed forthe speed gradient algorithm only, 

see Figure 4 below. The target attractor algorithm leads to the tracking goal exponentially fast 

with the minor error. 

 We observe a systematic error for SG algorithm taking the target signal v* as a constant, 

i.e. considering the case where the tracking goal is just a stabilization of the action potential at 

the certain level. The horizontal axis on Figure 4 represents different gammas (normalized by the 

capacitance CM), while the vertical axis stands for the target stabilization level of the action 

potentials. The color marks the approximate number of oscillations for the dynamics of the 
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actual action potential v(t) aroundthe stabilization level v*. The deep blue asymptotic color 

corresponds to a perfect stabilization, while the deep red asymptotic color reflects non-decaying 

oscillations of the action potential around the target level that never leads to the stabilization. 

 

 

Figure 4: The achievability of the control goal (4) in speed gradient algorithm for different 

control constants. Horizontal axis: gamma constant in (6); Vertical axis: the stabilization level 

v*. The color marks the quality of the stabilization (see the explanations above). 

 

Thus, on Figure 4 one can easily see that the choice of the control parameter gamma must 

be in a good agreement with the target level of the action potential v*, otherwise there is no the 

goal achievement (the red domain on the plot). The similar effect one can observe on the right 

plot of Figure 3 for SG case.  

3.3. Energy Power Efficiency of SG and TA Algorithms 

Another sufficient factor of successful control is the minimum power of the energy P(t) 

that is pumped by the control field into the system per unit of time. For the HH electrical circuit 

model providing the dynamical system (1) it can be evaluated as: 

).()()( tvtItP      
(18) 

For the particular cases (15) and (16) this power is plotted on Figure 5. 
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Figure 5: Power of tracking P(t) for speed gradient (pink) and target attractor (black) 

algorithms. Left: the linear superposition of harmonics (15); Right: the bursting-and-spiking 

train (16).  

 

 For the harmonic targets the powers of SG and TA signals do not differ sufficiently (the 

left plots). Nevertheless, for the spiking and bursting trains (the right plots) the target attractor 

algorithm is more energy consuming (its black curve of the energy pumping by control 

systematically stays above the SG pink curve). 

3.4. Insensibility towards the Perturbation of the Initial Conditions 

For real neurons we do not know exactly the set of the initial conditions for the 

dynamical variables (1). In the frame of SG and TA algorithms it is not sufficient, because the 

behavior of the dynamical system depends on the initial conditions very week (Fradkov, 2007; 

Kolesnikov, 2012). As an example, we demonstrate on Figure 6 the dynamics of the system (1) 

with few sets of its initial conditions under SG tracking (7); the target voltage is colored by red. 

 

Figure 6: SG tracking (7)of the target signal (red line) for different initial conditions; Vertical 

axes: the potentials in mV); Horizontal axes: time in ms. 
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The Figure 6 shows that for all initial conditions the system dynamics converges to the 

target behavior. 

4. Conclusions and Discussion 

The comparison of two algorithms, speed gradient and target attractor, shows that the 

choice of the certain approach depends on the criteria of control: 

 If the main factor is the minimization of the error (17), the target attractor method is definitely 

preferable.  

 If we consider performing the control with the minimum possible energy than the speed 

gradient has the priority. 

Two alternative algorithms developed here are not restricted by a single neuron. They 

could be used effectively for the purposes of neuro-informatics and for modeling neural 

dysfunctions like epileptiform or other abnormal behavior in Hodgkin-Huxley neuron clusters. 

For the extension of our approach to multi-neuron networks with an arbitrary topologySG 

and TA algorithms for the control of spiking in the network models should consider also the 

detailed mechanisms of synaptic transmission (Lu, et al., 2017), spontaneous voltage 

oscillations(Neiman, et al., 2011) and different roles of neurons in controlling population 

(Bandopadhayay & Stiles, 2017). Their applications for the modeling of neural populations will 

provide: 

 An efficient tool for studying the mechanisms of spiking and bursting in biological neuronal 

networks; 

 A theoretical background for practical realization of real-time control in biological neuronal 

networks. 
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