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Abstract 

Palm oil can grow in almost flexible topography. On flats, slopes, hilly, or undulating areas and 

whether on inland or reclaimed coastal areas. This makes the palm oil plantation environment 

unique with various soil types & surfaces. Each surface has a unique physical characteristic that 

directly influences the driving, handling, power efficiency, stability and safety of a robot. A mobile 

robot should have knowledge not limited to obstacles, but also the surface that the robot traverses 

to estimate wheel slippage and apply corrective measures. This paper discusses the harshness 

factors in palm oil plantation estates and the effects on wheel traction. We then present our review 

of several vibration-based surface classification techniques. Based on our survey, a combination 

of multimodal sensory for surface classification is more suitable to identify surfaces and terrain 

in palm oil plantations. 
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Robot, Surface Classification, Terrain Classification, Vibration, Palm Oil, Plantation 

1. Introduction 

Malaysia’s RM67.74 billion palm oil (PO) industry relies heavily on foreign labour, 

especially in the infield plantation sector. Since the Covid-19 pandemic and Movement Control 

restrictions, estates are short of workers. Palm oil production output and export were affected 

significantly in Malaysia. Harvesting and evacuation of fresh fruit bunches are activities in the 

estate that require a high number of foreign workers (Deraman et al., 2013). Both activities 

represent about 60% of the total work operation and account for 15% of the fruit production cost. 

Improving mechanisation and automation in these areas can increase production output as well as 

reduces the dependency on foreign labour.  

Our goal is to introduce an autonomous wheel robot to assist in infield operation. To 

navigate in a harsh estate environment, we need a mobile robot that can traverse through harsh 

surface and terrain settings. This paper describes our survey in surface classification techniques 

for the wheeled-based robot. We organise the paper as follows. Section 2 discusses the palm oil 

plantation’s environmental harshness and challenges. Section 3 describes the environmental 

parameters that will affect the robot. We described surface vibration classification processes in 
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Section 4. Section 5 provides a survey on the state-of-the-art techniques for surface detection, 

specifically vibration-based classification. 

 

2. The Harsh Plantation Environment 

We can describe the harshness of the plantation estate environment in multiple factors. 

Surface or soil in estates varies from clay, silt, sand, gravel, asphalt, peat or man-made trunk road 

mix with chemicals and additives as shown in Figure 1. Each soil has different water retention, 

coarseness, float and machine traverse-ability. Clay soil has high water retention, because of small 

particles and water easily trapped between them. After the rain, the water is absorbed slowly into 

the soil making it prone to water puddling and flooding as shown in Figure 2. Sandy soil has poor 

water retention, and after rain, it would quickly seeps through the soil. Peat soils as shown in Figure 

3: Infield with semi-compost material, are very spongy and have very high floatation (Woittiez, 

2022).  It is common for the estate ground covered with low grass or small to medium shrubs or 

vegetation as shown in Figure 4. For a robot to manoeuvre successfully, we must take into 

consideration of multiple surfaces and their characteristics.   

 

 Figure 1:Well maintain estate road 
 

Figure 2: Muddy trunk road 

  
Figure 3: Infield with semi-compost material 

 
Figure 4: Infield road with low grass 

  



MATTER: International Journal of Science and Technology 
ISSN 2454-5880 

   

38 
 

Figure 5: Terrace design on hilly terrain(Fair, 

2020) 

Figure 6: Terrace Close-up (Fair, 2020) 

 
Figure 7: Rhyno Transporting FFB (Deraman et al., 2013) 

(Source – Figures 1 & 2 https://www.sustainableagriculture.eco, Figures 3 & 4 Sime Darby 

Plantation – Carey Island, Figures 5 & 6 - https://www.eco-business.com  

 

Terrain or relief are vertical and horizontal dimensions of the land surface. Factors such as 

slope, elevation and orientation describe the terrain feature as shown in Figure 5 & Figure 6. It 

dictates the movement of water, making certain soil wet or dry. Unlike other crops, e.g., rapeseed, 

soy, and corn; the land is flat. For mechanisation in PO to be effective, it needs good harvesting 

paths to carry out infield operations. Without it, accessibility to the machine will be limited, 

especially in areas of steep terrains and pockets of hill locks.  

Malaysia is a tropical climate with high rain all year long. The monsoon season is from 

November to February and is prone to flooding. Heavy rain and high humidity change the surface 

characteristic. Some estates have natural clay soils. During the dry season, it is compact, and during 

the wet season, the clay particle swells by absorbing water. It causes the clay bond to fail and break 

the road surface and possibly form potholes as shown in Figure 2 and Figure 7. These potholes are 

dangerous to vehicles carrying heavy loads. Estate in Lahad Datu Sabah for example, typically 

have sandy soil with poor clay content and very low moisture instead (Shuib et al., 2020).  

PO plantation estate is extremely large. For example, a single division of estate has 2413 

hectares with 236,727 palm oil trees, with an average of 98 trees per hectare (Myspatial Sdn. Bhd.).  

61% of palm oil is owned by large private estates. Another 39% are owned by 300,000 small to 

medium farmers (Khalid et al., 2021). The sheer size of the plantation requires a long-operation 

machine. Palm oil trees can produce fruit for up to 20-30 years. Old plantations or even small 

estates might not have proper topological planning for water flow on slopes and plains. Thus, prone 

to water puddling and challenging for any machine to operate. Figure 5 shows proper terracing on 

the hillside. 

https://www.sustainableagriculture.eco/
https://www.eco-business.com/
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PO is planted about 20 feet between each other. After a certain age, the fronds provide a 

thick canopy. GPS or RTK solution might be hard to pinpoint any mobile robot's location. If the 

canopy percentage is over 60%, locking the location coordinate will not be workable (Aini et al., 

2014). Cellular signal is weak in most remote areas. With no significant landmark or marker makes 

it is hard to navigate.  

When any of the parameters changes, wheel traction and traversability of a mobile robot 

will be affected. Thus, having infield information about the environment and surroundings, i.e., 

surface and terrain information is important for the robot to navigate properly. 

 

3. Mobile Robots in Harsh Environment 

Conventional motion control systems and motion planning strategies deal with smooth 

surfaces and terrain. It is imperative to detect the topology and its surfaces to determine the best 

possible route. Profile that comprises parameters such as speed, torque, braking, and cornering can 

be customised to suit individual surfaces and environments. 

3.1. Requirement of Autonomous Robot in Plantation 

While there is plenty of robotic form factor e.g., legged, track-based but they lack the range 

and support infield operation. It may be challenging for certain terrain and soil condition i.e., peat 

soil & muddy surfaces. Track-based vehicles provide better traction and floatation on soft peat 

soil. But limited in range and speed. Wheeled robots are among the popular design in an 

autonomous robot system. It has an advantage over other designs because of the distance it can 

cover, ease of manoeuvrability and suitability for palm oil estate operation. Here we list some 

requirements for a wheeled robot: - 

• Support infield operations - Requires acceptable carrying and towing load capacity. The 

robot must be flexible to attach common agricultural fixtures, e.g., bin, sprayer, hook, and 

grabber. 

• Surface & terrain traversability - good traction wheels & more than 15% climbing degree 

ensure the traversability of the robot on steep terrain. 

• Cost-effective - 30% of PO estates are owned by small to medium farmers. The solution 

must be cost-effective and accessible to them. 

• Support large estate - Palm oil estate is large in land area. Operational distance, time and 

robot maximum speed play a crucial role for a medium to a large estate. 



MATTER: International Journal of Science and Technology 
ISSN 2454-5880 

   

40 
 

3.2. Effects of Harsh Landscape on Wheel Traction 

A harsh topological landscape and a multitude of surfaces make it challenging for any 

machinery on the plantation. The harsh environments cause farmers to use different transportation 

depending on surface conditions and weather. To support infield transportation, machinery is 

preferred to increase efficiency. But where the path is inaccessible, wheelbarrows and animal-

driven carts, i.e., using buffalo, are still being used (Deraman et al., 2013) (Muhamad & Aziz, 

2018). To have better floatation on peat soil and challenging terrain, several vehicle configurations 

use wide tires, rubber track or a combination of both e.g., Beluga or Rhyno, as shown in Figure 7.  

The effects of insufficient traction can be described: –  

• Insufficient traction will cause the vehicle to slip, drift, over or under-steer and even dig 

the soil. It can lead to topple or fall, which poses a safety issue to the mobile robot and its 

surrounding.  

• If speed is not suitable for the current road condition, safe braking distance may 

compromise. 

• Without proper traction compensation, wheel slips will occur, which leads to inefficient 

energy usage.  

• Shifted weight during operation can affect the vehicle's centre of gravity and each wheel 

has a different traction requirement. 

To improve traction, some strategies can mitigate the issues: - 

• Suitable tire profile, width and tire pattern for sufficient surface contact. Reducing tire 

pressure also helps to increase traction (Muhamad & Aziz, 2018).  

• Distributing weight evenly and proper vehicle centre of gravity on flat or steep terrain 

increases wheel traction.  

• Incorporating a control system can detect tire slippage and adjust the motor speed, torque, 

and braking profile accordingly. 

• Other non-trivial systems that can help tractions are a tire monitor which keeps track of 

pressure, tire load, wear and tear, puncture and even temperature. This gives additional 

inputs to the robotic system to react accordingly. To counter harsh conditions, an adaptive 

suspension can be used for the vehicle. 

•  If the terrain and surface classification knew beforehand, the system can navigate and pass 

through with a certain degree of certainty to decide or find an alternate route. 
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4. Surface Classifications   

Surface classification can be categorised by visual and non-visual techniques. In this paper, 

we focus on the latter. Non-visual surface identification uses haptic or accelerometer-based 

sensors. It’s usually a simple sensor, with non-complex data output. Since the data is not complex 

like vision-based data, the processing requirement is low. The hardware form factor is usually 

small, robust, rugged and maintenance-free suitable for outdoor usage. One of the biggest 

differences compared to the visual sensor counterpart is, the non-visual system detects “as it 

happens”. To have a “just-in-time” reaction, the overall solution, i.e., algorithm or communication 

bus must be executed in real-time. The operation speed of the robot plays a role in how fast the 

algorithm is needed to identify and classify the surface. 

4.1. Vibration-based Surface Classification 

When the vehicle is in motion, surface unevenness produces a vibration signature. Some 

motion sensors that can be used are vibration-specific sensors, gyroscope, or acceleration values 

in IMU sensor. One study was conducted using a tactile metal probe touching the surface and the 

metal rod attached to the IMU. This gives a direct profile of the surface, rather than being 

dampened by vehicle suspension mechanisms or tires (Giguere & Dudek, 2011). The z-axis of the 

accelerometer, which is a vertical movement of the robot, would be the point of interest. Some 

experiments combine gyroscope data and IMU for surface classification (M. Concon et al., 2021). 

Based on our literature review, it is common to constant certain parameters. For example, 

vehicle dimension (length, width) and operational variable (speed, velocity and trajectory). Several 

works experiment on variable speed and manoeuvrability, i.e., cornering, acceleration or de-

acceleration. Training the classifier with these data would be closer to real-life applications. 

Multiple external factors affect the robot’s vibration: -  

• Anatomical of the robot i.e., robot length, width, ground clearance, suspension system, tire 

dimension and profile.  

• Application use cases - of the robot to support various infield operations. The mounting of 

different extensions might dampen or amplify vibration. 

•  Vehicle in motion - speed and velocity. Many surface identification and classification 

experiments stick to one speed across the different surfaces for ease of the experiment. 

Different speeds give different amplitudes of collected acceleration signals.(Sattar et al., 

2018) argues at high speeds, the output discrimination between normal road and pothole 
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regions was difficult. Some collect multiple speeds. e.g., 15, 30, 60km/h and normalised to 

a single value (Sattar et al., 2018) while others collect and test the classification accuracy 

at multiple speeds (Bai et al., 2019). (Yi et al., 2015)  Introduce a lookup table by 

categorising speed into different ranges. Each event is then indexed according to the ratio 

of standard deviation in which the event had been detected.    

• Wear and tear of components - over time, any joint or moving mechanical parts, e.g., tire, 

suspension, steering, may deteriorate. Vibration might increase or new vibration is 

introduced due to mechanical failure. It is imperative to take into consideration future work 

enhancement. 

4.2. Classification Techniques 

There are two common techniques for vibration-based classification. First is feature 

engineering. It identifies and selects distinct vibration feature patterns and trains the model. 

Second, is feature learning. It trains the classifier model using raw data instead of extracting 

vibration features.  

Good classification depends on good-quality data. Usually, filters are applied to remove 

noise that distorts parts of the signal. For example, a high-pass filter is used to spot low-frequency 

evidence such as speed change and vehicle manoeuvring, which have lower frequencies than road 

surface anomalies (Sattar et al., 2018). Some remove data outliers by applying Median Absolute 

Deviation (MAD) (Sayed et al., 2018).  If possible, the vibration that originates from the robot 

itself, i.e., motor vibration, suspension or transmission, be removed.    

It is a common practice where data will be chunked into predetermined segments. Each 

segment can comprise X number of data points and each segment overlaps by e.g., 20% or 50% 

between the previous segment. Studies show that the number of data points per segment affects 

the accuracy of the model and the training time (Sattar et al., 2018), (Concon et al., 2021), (Giguere 

& Dudek, 2011). If the segment to large, accuracy will not increase. To determine the most 

effective classifier algorithms parameter such as accuracy, speed of identification, and training 

time is often compared. 

In Feature Engineering, raw data is labelled according to the surface. Then the data is split 

into short segments. A common method for extracting interesting features is from time or 

frequency domain analysis. For the time domain; mean, variance, skewness, kurtosis, and the fifth 

moment can be used. For the Frequency domain, PSD, FFT or the sum of the higher half of 
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amplitude. Some argue that time-domain analysis is better than the frequency domain. Frequency 

analysis tends to ignore important cues in the phase spectrum, which would not be good for surface 

detection (Giguere & Dudek, 2011).   

Feature Engineering relies heavily on the accurate vibration pattern of the surface. Instead 

of extracting features, end-to-end learning can learn unique feature representations directly from 

the raw data. Usually, the algorithm uses deep learning techniques that require high computing 

processing during training. But training can be done offline on the cloud for example and does not 

affect the mobile robot computation. In table 1, we surveyed several research works that classify 

surfaces based on vibration profile. In the table below, we discuss the methods and their accuracies. 

Table 1: Vibration-based Surface Classification Review 

Surfaces Method Accuracy Comments 

Wood, 

carpet, 

concrete, 

gravel, tiles 

(Concon et al., 2021) Uses lateral, 

longitude, vertical acceleration, and 

angular velocities as data input with minor 

pre-processing. Data is segmented into 1.5 

seconds or 75 samples per window with an 

overlap of 20% to conserve the temporal 

dependencies between time steps. Use deep 

learning to train the classifier; LSTM, 1D 

convolutional Network and Convolutional 

Neural Network LSTM (CNN-LSTM) 

CNN-LSTM 

provides the highest 

accuracy - 98.49% 

out of all classifiers 

they tested. 

A small-scale robot 

was used that might 

not reflect the actual 

robot form factor 

for our case. The 

method is easy to 

replicate. 

Packed/loose 

gravel, sand, 

sparse/tall 

grass, 

asphalt  

(DuPont et al., 2008)  Tested with varying 

window sizes to tune classification 

accuracy. The experiment was conducted 

on a robot equipped with a shock absorber 

and at different speeds. Data is processed 

using FFT and trained using a Probabilistic 

Neural Network 

Confidence level of 

90-100% for 

various terrains. 

The author noted 

that an additional 

wheel sensor to get 

wheel slippage can 

improve 

classification 

accuracy. 

Grass, tile, 

carpet, 

terrazzo, 

gravel, 

(Giguere & Dudek, 2011) A small 

vacuum-like robot was used. The 

accelerometer is attached to a metal tactile 

rod that touches the ground surface. The 

For 1 and 4-second 

windows, the 

learning accuracies 

range from 89.9% 

to 94.6%. 

The author claims 

using a tactile probe 

that touches the 

surface will provide 

a more accurate 
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wood, pack 

dirt. 

surface was classified using Artificial 

Neural Network  

representation of 

the surface. For our 

outdoor robot, we 

foresee issues in the 

durability and 

applicability of the 

probe. 

brick, flat, 

soil, cement, 

sand 

(Bai et al., 2019)Tested two robot 

platforms (Clearpath Jackal & Blue Whale 

XQ) at multiple speeds. It extracts features 

from FFT and uses a deep neural network 

based on Multilayer Perception for training 

the classifier. 

Up to 98% accuracy 

for both mobile 

robot platforms at 6 

different speeds 

ranging from 

0.2m/s to 0.6 m/s 

Testing the 

classification 

method at two 

different platforms 

and multiple speed 

proofs is valuable 

for real-life use 

cases.  

bedrock, soil 

and sand 

targeting for 

Mars 

exploration 

(Otsu et al., 2016) uses vibration sensors 

and onboard video capture to learn from 

onsite experience through self-supervised 

learning. For vision, it uses the colour 

feature and vibration data uses the Wavelet 

power spectrum feature. It is noted that 

visually similar terrain may differ from 

mechanical vibration. It employs co- and 

self-training to train two classifiers, vision 

and vibration separately and re-train them 

iteratively on each other’s output. For co-

training, it uses SVM. 

Up to 82 % of 

accuracy. 

Since the planetary 

rover has not gone 

to any planet before, 

thus training data 

are not available 

beforehand. Rovers 

need to learn 

quickly from their 

own experience in 

the early phase of 

surface operation. 

The approach might 

be suitable for harsh 

palm oil estate 

conditions. 

To check 

road 

condition. 

(Sattar et al., 2018) comparative studies of 

detecting road unevenness using built-in 

sensors in the smartphone. To check road 

Since it is a 

comparison study 

for other work, the 

It gives us an idea of 

how to do surface 

classification even 



MATTER: International Journal of Science and Technology 
ISSN 2454-5880 

   

45 
 

Either 

manmade or 

road 

damage. 

surface anomalies such as potholes, cracks, 

and bumps as the car passes over. It 

reviewed two types of sensors to collect 

vibration from phones. Accelerometer and 

gyroscope. The identifies the use of 

threshold-based, machine learning (SVM, 

K-Means Clustering, Linear Regression, 

and others) and Dynamic Time Wrapping 

Approach in several works.  

results vary from 60 

to 90% accuracy. 

by using 

smartphones.  

Asphalt, tile 

cobble, 

gravel 

concrete, 

artificial 

grass, 

plastic.  

(Mei et al., 2019)  Vibration signal from 

accelerometer by subtracting gravitational 

acceleration and splitting the signal into 

segments. Each segment contains a 50% 

overlap of successive segments. Uses One 

Dimensional Convolutional LSTM 

(1DCL) to learn spatial and temporal 

features of the vibration data. 

using 1 Dimension 

Convolutional 

Layer (1DCL) with 

an accuracy of 

80.18% 

Vibration collected 

on the dampened 

signal due to tire 

and suspension 

provides a real 

implementation of 

attaching the IMU 

to the vehicle. It 

tested feature 

engineering and 

feature learning. 

Based on their 

experiment, feature 

learning has better 

accuracy. 

(Source: Authors' Illustration) 

5. Discussion and Conclusion 

Surface detection is one aspect of inputs for autonomous robots to decide on better traction, 

safety and optimal navigation. Based on our survey, relying solely on vibration data might not be 

sufficient. We can add additional inputs, such as vision to detect surfaces and border identification 

to have better classification accuracy (Gonzalez & Iagnemma, 2018; Masha & Burke, 2021). We 

can further enhance this with a multi-modal approach, which fuses robot position information with 

wheel slippage information.  
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Tropical weather in Malaysia is hot, rainy, or highly humid. Each weather changes the soil 

characteristics and affects wheel traction. It is possible to include weather data and data from 

humidity sensors in the current environment. Historical knowledge on the previous traverse path 

can be stored for future reference too. These additional data can help robots decide on navigation 

tasks or to estimate the surface condition. 

In future, we would like to study the combination of vibration sensors with vision such as 

feature extraction & colour. The robot must be able to traverse a multitude of surfaces and terrains.  

Our research was done during the pandemic. Access to the palm oil plantation estate was restricted. 

Our understanding of the palm oil plantation estate surfaces and terrain characteristics was limited 

to literature and online sources. It is possible that we may miss out on important points and 

observations. We need to do an up-close site visit at the plantation estate, to study the environment 

and infield plantation operations to have a better understanding to design our mobile robot. 
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