INFLUENCE OF SURFACE QUALITY ON THE CORROSION AND CORROSION FATIGUE BEHAVIOR OF HIGH ALLOYED STEELS EXPOSED TO DIFFERENT SALINE AQUIFER WATER ENVIRONMENTS

Authors

  • Anja Pfennig HTW-Berlin, University of Applied Sciences, Berlin, Germany
  • Andre Gröber HTW-Berlin, University of Applied Sciences, Berlin, Germany
  • Roman Simkin BAM, Federal Institute for Materials Research and Testing Berlin, Berlin, Germany
  • Axel Kranzmann BAM, Federal Institute for Materials Research and Testing Berlin, Berlin, Germany

DOI:

https://doi.org/10.20319/mijst.2019.51.115137

Keywords:

High Alloyed Steel, Pitting, Surface, Roughness, Corrosion Fatigue, Corrosion, CCS, CO2-Storage

Abstract

Coupons of X5CrNiCuNb16-4 with different surface roughness that may be utilized as injection pipe with 16% Chromium and 0.05% Carbon (1.4542, AISI 630) were exposed for 3000 h to CO2-saturated saline aquifer water simulating the conditions in the Northern German Basin at ambient pressure and 60 °C. Additionally, corrosion fatigue experiments (ambient pressure, technically clean CO2, saline aquifer water of Stuttgart Aquifer) were performed using specimen of X46Cr13 (1.4043, AISI 420C) with regard to the influence of the roughness of technical surfaces on the number of cycles to failure at different stress amplitudes. Specimen of duplex stainless steel X2CrNiMoN22-3-2 (1.4462) for corrosion fatigue experiments were provided with technical surfaces after machining as well as polished surfaces. Results were obtained at load amplitudes ranging from 175 MPa to 325 MPa in the geothermal brine of the Northern German Basin at 98 °C. The main precipitation phases on the surface as well as within pits reveal carbonates or hydroxides such as siderite (FeCO3) and ferrous hydroxide goethite (FeOOH) independent of the original surface roughness. Corrosion rates for polished and technical surfaces were below 0.005 mm/year compared to corrosion rates of 0.035 mm/year after shot peening. Specimen with technical surfaces tested at high stress amplitudes (>275 MPa) lasted longer (cycles to failure: P50% at Sa 300 MPa=5x105) than specimen with polished surfaces (cycles to failure: P50% at Sa 300 MPa=1.5x105). This behavior is emphasized by the slope coefficient (technical surfaces k = 19.006, polished surfaces k=8.78) meaning earlier failure for polished at high stress amplitude Sa. Although rather low scatter ranges (technical surface: TN=1:1.35, polished surface: TN=1.1.95) indicate no change in failure mechanism it may be assumed that at low stress pitting is the initiating crack growth process whereas at high stress amplitudes the formation of micro cracks is reason for crack propagation and failure.

References

Abdulstaar M., Mhaede M., Wollmann M., Wagner L. (2014). Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surface & Coatings Technology, 254, 244–251. https://doi.org/10.1016/j.surfcoat.2014.06.026

Ahmed A. A., Mhaede M., Basha M., Wollmann M., Wagner L. (2015). The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel. Surface & Coatings Technology, 280, 347–358. https://doi.org/10.1016/j.surfcoat.2015.09.026

Akbari Mousavi S.A.A., Sufizadeh A.R. (2009). Metallurgical investigations of pulsed Nd:YAG laser welding of AISI 321 and AISI 630 stainless steels. Materials & Design 30, (8), 3150-3157. https://doi.org/10.1016/j.matdes.2008.11.026

Alvarez-Armas I. (2008). Duplex Stainless Steels: Brief History and Some Recent Alloys. Recent Patents on Mechanical Engineering, 1 (1), 51–57 https://doi.org/10.2174/2212797610801010051

Aparicio C., Gil F.J., Fonseca C., Barbosa M., Planell J.A. (2003). Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 24, 263. https://doi.org/10.1016/S0142-9612(02)00314-9

Arnold N., Gümpel P., Heitz T.W. (1999). Chloride induced corrosion on stainless steels at indoor swimming pools atmospheres Part 2: influence of hypochlorite. Materials and Corrosion, 49, 140–145. https://doi.org/10.1002/(SICI)1521-4176(199903)50:3<140::AID-MACO140>3.0.CO;2-3

Banaś, J., Lelek-Borkowska, U., Mazurkiewicz B., Solarski W. (2007). Effect of CO2 and H2S on the composition and stability of passive film on iron alloy in geothermal water. Electrochimica Acta, 52, 5704–5714. https://doi.org/10.1016/j.electacta.2007.01.086

Bäßler R., Sobetzki J., Klapper H.S. (2013). Corrosion Resistance of High-Alloyed Materials in Artificial Geothermal Fluids. Vol. NACE Inter Nr. Corrosion, Orlando, USA, paper 2327.

Beuth Verlag GmbH (2009). Korrosion der Metalle - Korrosionsuntersuchungen - Teil 1: Grundsätze DIN 50905-1:2009-09.

Buschermöhle H. (1996). Vereinheitlichung von Proben für Schwingungsversuche. FKM Forschungsheft 217.

Carvalho D.S, Joia C.J.B, Mattos O.R. (2005). Corrosion rate of iron and iron-chromium alloys in CO2-medium. Corrosion Science, 47, 2974-2986. https://doi.org/10.1016/j.corsci.2005.05.052

Choi, Y.-S. and Nešić, S. (2008). Corrosion behaviour of carbon steel in supercritical CO2-water environments. No. 09256 NACE Corrosion Conf. & Expo, New Orleans, Louisiana, USA, March 16th – 20th.

Cui, Z.D., Wu, S.L., Zhu, S.L., Yang, X.J. (2006). Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2. Applied Surface Science, 252, 2368-2374. https://doi.org/10.1016/j.apsusc.2005.04.008

Engelmohr F. und Fiedler B. (1991). Erhohung der Dauerfestigkeit geschmiedeter Pleuel durch Kugelstrahlen unter Vorspannung. Mat.-wiss. u. Werkstofftech., 22, 211-216. https://doi.org/10.1002/mawe.19910220606

Evgenya B., Hughesa T., Eskinba D. (2016). Effect of surface roughness on corrosion behaviour of low carbon steelin inhibited 4 M hydrochloric acid under laminar and turbulent flow conditions. Corrosion Science, 103, 196–205. https://doi.org/10.1016/j.corsci.2015.11.019

Foct J., Akdut N. (1993). Cleavage-like fracture of austenite in duplex stainless steel. Scripta Metallurgica et Materialia, 29 (2), 153–158. https://doi.org/10.1016/0956-716X(93)90300-H

Förster, A et al. (2010) Reservoir characterization of a CO2 storage aquifer: The Upper Triassic Stuttgart Formation in the Northeast German Basin. Mar. Pet. Geol., 27, 2156–2172. https://doi.org/10.1016/j.marpetgeo.2010.07.010

Förster, A., Norden, B. Zinck-Jørgensen, K. Frykman, P. Kulenkampff, J. Spangenberg, E. Erzinger, J. Zimmer, M. Kopp, J. Borm, G. Juhlin, C. Cosma, C. Hurter, S. (2006), Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany: Environmental Geosciences, 13 (3), 145-161. https://doi.org/10.1306/eg.02080605016

Gale, J. Davison J., (2004). Transmission of CO2 – safety and economic considerations. Energy, 29, 1319–1328. https://doi.org/10.1016/j.energy.2004.03.090

Grümpel P. et al. (2008), Rostfreie Stähle: Grundwissen, Konstruktions- und Verarbeitungshinweise, 4. Völlig neu bearbeitete Auflage, Expert Verlag, Renningen. ISBN 978-3-8169-2689-4 (pg. 1-3,31-32,51,53-55,57,78).

Han J., Zhang J., Carey J.W. (2011). Effect of bicarbonate on corrosion of carbon steel in CO2-saturated brines. Journal of Green House Gas Control, 5, 1680-1683. https://doi.org/10.1016/j.ijggc.2011.08.003

Islam A.W., Sun A.Y. (2016). Corrosion model of CO2 injection based on non.isothermal wellbore hydraulics. International Journal of Greenhouse Gas Control, 54, 219-227. https://doi.org/10.1016/j.ijggc.2016.09.008

Kissinger A., Noack V., Knopf S., Scheer D., Konrad W., Class H. (2014). Characterization of reservoir conditions for CO2 storage using a dimensionless Gravitational Number applied to the North German Basin. Sustainable Energy Technologies and Assessments, 7, 209–220. https://doi.org/10.1016/j.seta.2014.06.003

Kleemann U. und Zenner H. (2006). Structural component surface and fatigue strength – Investigations on the effect of the surface layer on the fatigue strength of structural steel components. Mat.-wiss. u. Werkstofftech., 37 (5) 349-373. https://doi.org/10.1002/mawe.200600995

Lee S. M., Lee W. G., Kim Y. H., Jang H. (2012). Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel. Corrosion Science 63 404–409. https://doi.org/10.1016/j.corsci.2012.06.031

Llaneza V., Belzunce F.J. (2015). Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work. Applied Surface Science, 356, 475–485 https://doi.org/10.1016/j.apsusc.2015.08.110

Lo I.-H., Tsai W.-T (2007). Effect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel. Corrosion Science, 49 (4), 1847–1861. https://doi.org/10.1016/j.corsci.2006.10.013

Lopez D.A., Perez T., Simison S.N. (2003). The influence of microstructure and chemical composition of carbon and low alloy steel in CO2 corrosion. A state of the art appraisal Materials and Design, 24, 561-575. https://doi.org/10.1016/S0261-3069(03)00158-4

Lv J., Guo W., Liang T. (2016). The effect of pre-deformation on corrosion resistance of the passive film formed on 2205 duplex stainless steel. Journal of Alloys and Compounds, 686, 176-183. https://doi.org/10.1016/j.jallcom.2016.06.003

Maranhão C., Davim J.P. (2010) Finite element modelling of machining of AISI 316steel: numerical simulation and experimental validation. Simul. Modell. Pract.Theory, 18, 139–156. https://doi.org/10.1016/j.simpat.2009.10.001

Martin M., Weber S., Izawa C., Wagner S., Pundt A., Theisen W. (2011). Influence of machining-induced martensite on hydrogen-assisted fracture of AISI type 304austenitic stainless steel. Int. J. Hydrogen Energy, 36, 11195–11206. https://doi.org/10.1016/j.ijhydene.2011.05.133

Mathis R. (1987). Initiation and early growth mechanisms of corrosion fatigue cracks in stainless steels. Journal of Materials Science, 22 (3), 907–914. https://doi.org/10.1007/BF01103528

Moreira R.M., Franco C.V., Joia C.J.B.M., Giordana S., Mattos O.R. (2004). The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid. Corrosion Science 46 (2004) 2987-3003. https://doi.org/10.1016/j.corsci.2004.05.020

Mu L.J., Zhao W.Z. (2010). Investigation on carbon dioxide corrosion behavior of HP13Cr110 stainless steel in simulated stratum water. Corrosion Science, 52, 82-89. https://doi.org/10.1016/j.corsci.2009.08.056

Nešić, S. (2007). Key issues related to modelling of internal corrosion of oil and gas pipelines – A review. Corrosion Science, 49, 4308–4338. https://doi.org/10.1016/j.corsci.2007.06.006

Nor Asma R.B.A., Yuli P.A., Mokhtar, C.I. (2010). Study on the effect of surface finish on corrosion of carbon steel in CO2environment. Journal of Applied Science, 11, 2053–2057.

Pfennig A., Heynert K., Wolf M., Böllinghaus T. (2014). First in-situ Electrochemical Measurement During Fatigue Testing of Injection Pipe Steels to Determine the Reliability of a Saline Aquifer Water CCS-site in the Northern German Basin. Energy Procedia, 63, 5773-5786. https://doi.org/10.1016/j.egypro.2014.11.610 https://doi.org/10.1016/j.egypro.2014.11.609

Pfennig A., Kranzmann A. (2012). Effect of CO2 and pressure on the stability of steels with different amounts of Chromium in saline water. Corrosion Science, 6, 441–452 https://doi.org/10.1016/j.corsci.2012.08.041

Pfennig A., Linke B., Kranzmann A. (2011). Corrosion behavior of pipe steels ex-posed for 2 years to CO2-saturated saline aquifer environment similar to the CCS-site Ketzin, Germany. Energy Procedia, 4, 5122-5129. https://doi.org/10.1016/j.egypro.2011.02.488

Pfennig A., Wolf M., Bork C.-P., Trenner S., Wiegand R (2014). Comparison between X5CrNiCuNb16-4 and X46Cr13 under Corrosion Fatigue. In: Corrosion 2014, San Antonio, Texas, USA, NACE International, Paper No. 3776.

Pfennig A., Wolf M., Gröber A., Böllinghaus T., Kranzmann A. (2016). Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment, 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14th -18th November 2016, Lausanne, Switzerland.

Pfennig, A. Kranzmann A. (2011). Reliability of pipe steels with different amounts of C and Cr during onshore carbon dioxid injection. International Journal of Greenhouse Gas Control, 5, 757–769. https://doi.org/10.1016/j.ijggc.2011.03.006

Pfennig, A., Wolthusen, H., Kranzmann, A. (2017). Unusual corrosion behavior of 1.4542 exposed a laboratory saline aquifer water CCS-environment. Energy Procedia, 114, 5229-5240. https://doi.org/10.1016/j.egypro.2017.03.1678 https://doi.org/10.1016/j.egypro.2017.03.1679

Pfennig, A., Wolthusen, H., Wolf, M., Kranzmann, A. (2014). Effect of heat treatment of injection pipe steels on the reliability of a saline aquifer water CCS-site in the Northern German Basin Energy Procedia, 63, 5762-5772.

Prosek T., Le Gac A., Thierry D., Le Manchet S., Lojewski C., Fanica A., Johansson E., Canderyd C., Dupoiron F., Snauwaert T., Maas F., Droesbeke B. (2014). Low temperature stress corrosion cracking of austenitic and duplex stainless steels under chloride deposits. Corrosion, 70 (10), 1052–1063. https://doi.org/10.5006/1242

Ruhl A.S., Goebel, A. Kranzmann, A. (2012). Corrosion Behavior of Various Steels for Compression, Transport and Injection for Carbon Capture and Storage. Energy Procedia, 23, 216-225 https://doi.org/10.1016/j.egypro.2012.06.074

Sanjurjo P., Rodríguez C., Pariente I. F., Belzunce F.J., Canteli A.F. (2010). The influence of shot peening on the fatigue behaviour of duplex stainless steels. Procedia Engineering, 2, 1539-1546. https://doi.org/10.1016/j.proeng.2010.03.166

Schultze S., Göllner J., Eick K., Veit P., Heyse H. (2001). Selektive Korrosion von Duplexstahl. Teil 1: Aussagekraft herkömmlicher und neuartiger Methoden zur Untersuchung des Korrosionsverhaltens von Duplexstahl X2CrNiMoN22-5-3 unter besonderer Berücksichtigung der Mikrostruktur. Materials and Corrosion, 52 (1), 26–36. https://doi.org/10.1002/1521-4176(200101)52:1<26::AID-MACO26>3.0.CO;2-N https://doi.org/10.1002/maco.19500010108

Seiersten M. (2001), Material selection for separation, transportation and disposal of CO2, Corrosion paper no. 01042.

Shahryari A., Kamal W., Omanovic S. (2008).The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel. Materials Letters, 62, 3906–3909. https://doi.org/10.1016/j.matlet.2008.05.032

Takemoto M. (1984). Study on the failure threshold stress criteria for the prevention and mechanism of stress corrosion cracking, in: Faculty of Science and Engineering, Aoyama Gakuin University 6-16-1, Chitosedai, Setagayaku, Tokyo, 157 Japan, Int’l. Congress Metallic Corr.

Thomas D.C. (2005). Carbon Dioxide Capture for Storage in Deep Geologic Formations – Results from CO2 Capture Project, Volume 1: Capture and Separation of Carbon Dioxide form Combustion Sources, CO2 Capture Project, Elsevier Ltd UK, ISBN 0080445748.

Vollmar J. (1994). Schwingungsrisskorrosion des ferritisch-austenitischen Stahles X2CrNiMoN22-5-3 in 3 %iger NaCl-Lösung unter definierten Korrosions- und Wärmeübergangsbedingungen. Affirmed dissertation at the Kaiserslautern University. Kaiserslautern 3-6, pg. 46-51.

Wang J, Zou H. (2006). Relationship of microstructure transformation and hardening behavior of type 630 stainless steel. J Univ Sci Tech Beijing, 3, 213–221. https://doi.org/10.1016/S1005-8850(06)60045-5

Wei, L., Pang, X., Liu, C., Gao, K. (2015). Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment. Corrosion Science, 100, 404–420. https://doi.org/10.1016/j.corsci.2015.08.016

Wolf M., Afanasiev R., Böllinghaus T., Pfennig A. (2016). Investigation of Corrosion Fatigue of Duplex Steel X2CrNiMoN22 5 3 Exposed to a Geothermal Environment under Different Electrochemical Conditions and Load Types, 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14th -18th November 2016, Lausanne, Switzerland.

Wu S.L, Cui Z.D., Zhao G.X., Yan M.L., Zhu S.L., Yang X.J. (2004). EIS study of the surface film on the surface of carbon steel form supercritical carbon dioxide corrosion. Applied Surface Science, 228, 17-25. https://doi.org/10.1016/j.apsusc.2003.12.025

Wu X.Q., Guan H., Han E. H., Ke W. and Katada Y. (2006). Influence of surface finish on fatigue cracking behavior of reactor pressure vessel steel in high temperature water. Materials and Corrosion 57, (11), 868-871. https://doi.org/10.1002/maco.200503963

Xu M., Zhangb Q., Yanga X.X., Wanga Z., Liub J., Li Z. (2016). Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2. Journal of Supercritical Fluids, 107, 286–297. https://doi.org/10.1016/j.supflu.2015.09.017

Zhang W., Fang K., Hu Y., Wang S., Wang X. (2016). Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corrosion Science, 108, 173–184. https://doi.org/10.1016/j.corsci.2016.03.008

Downloads

Published

2019-04-16

How to Cite

Pfennig, A., Gröber, A., Simkin, R., & Kranzmann, A. (2019). INFLUENCE OF SURFACE QUALITY ON THE CORROSION AND CORROSION FATIGUE BEHAVIOR OF HIGH ALLOYED STEELS EXPOSED TO DIFFERENT SALINE AQUIFER WATER ENVIRONMENTS . MATTER: International Journal of Science and Technology, 5(1), 115–137. https://doi.org/10.20319/mijst.2019.51.115137